Functional properties of ryanodine receptors in hippocampal neurons change during early differentiation in culture.

نویسندگان

  • Manana Sukhareva
  • Susan V Smith
  • Dragan Maric
  • Jeffery L Barker
چکیده

6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)hexanoic acid ryanodine (BODIPY-ryanodine) binding and Ca(2+) imaging were used to study the properties of ryanodine receptors (RyRs) and cytoplasmic Ca(2+) (Ca) changes in neurons cultured from the embryonic rat hippocampus during the earliest stages of differentiation. Baseline Ca levels declined from 164 +/- 5 (SD) nM at early stages to 70 +/- 4 nM in differentiated neurons. Fluorescent BODIPY-ryanodine binding signals identified activated RyRs in somata, which were eliminated by removal of external Ca(2+) or by blockage of Ca(2+) entry through L-type but not N-type Ca(2+) channels. The GABA synthesis inhibitor 3-mercaptopropionic acid completely abolished ryanodine binding. Caffeine or K(+)-depolarization inhibited the activity of RyRs at very early stages of differentiation but had stimulatory effects at later stages after a network of processes had formed. BayK-8644 stimulated RyRs throughout all regions of all differentiating cells. The results suggest that in differentiating embryonic hippocampal neurons the activity of RyRs is maintained via Ca(2+) entering through L-type Ca(2+) channels. The mode of activation of L-type voltage-gated Ca(2+) channels with either membrane depolarization or specific pharmacological agents affects the coupled activity of RyRs differently as neurons differentiate processes and networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 2002